8 research outputs found

    Are small firms really sub-optimal?: compensating factor differentials in small Dutch manufacturing firms

    Get PDF
    Onderzoek naar de vraag waarom er zoveel kleine bedrijven kunnen bestaan, ondanks de heersende opvatting dat dit bedrijven zijn die op sub-optimale schaal presteren. Kleine bedrijven blijken productiefactoren verschillend te belonen en toe te passen ten opzichte van grote bedrijven, en langs deze weg bedrijfsgroottenadelen te compenseren. Uit een steekproef onder 7.000 Nederlandse industriële bedrijven blijkt dat deze strategie van compenserende factordifferentialen toegepast wordt in Europa. Enerzijds lijkt deze strategie te leiden tot een nettoverlies voor de economie. Anderzijds suggereren de positieve relaties tussen bedrijfsleeftijd en werknemerscompensatie, en bedrijfsleeftijd en productiviteit dat er minstens een tendens is dat het inefficiënte bedrijf van vandaag het efficiënte bedrijf van de toekomst kan worden.

    Antibody Response in Immunocompromised Patients With Hematologic Cancers Who Received a 3-Dose mRNA-1273 Vaccination Schedule for COVID-19.

    Get PDF
    Importance: It has become common practice to offer immunocompromised patients with hematologic cancers a third COVID-19 vaccination dose, but data substantiating this are scarce. Objective: To assess whether a third mRNA-1273 vaccination is associated with increased neutralizing antibody concentrations in immunocompromised patients with hematologic cancers comparable to levels obtained in healthy individuals after the standard 2-dose mRNA-1273 vaccination schedule. Design, Setting, and Participants: This prospective observational cohort study was conducted at 4 university hospitals in the Netherlands and included 584 evaluable patients spanning the spectrum of hematologic cancers and 44 randomly selected age-matched adults without malignant or immunodeficient comorbidities. Exposures: One additional mRNA-1273 vaccination 5 months after completion of the standard 2-dose mRNA-1273 vaccination schedule. Main Outcomes and Measures: Serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens prior to and 4 weeks after a third mRNA-1273 vaccination, and antibody neutralization capacity of wild-type, Delta, and Omicron variants in a subgroup of patients. Results: In this cohort of 584 immunocompromised patients with hematologic cancers (mean [SD] age, 60 [11.2] years; 216 [37.0%] women), a third mRNA-1273 vaccination was associated with median S1-IgG concentrations comparable to concentrations obtained by healthy individuals after the 2-dose mRNA-1273 schedule. The rise in S1-IgG concentration after the third vaccination was most pronounced in patients with a recovering immune system, but potent responses were also observed in patients with persistent immunodeficiencies. Specifically, patients with myeloid cancers or multiple myeloma and recipients of autologous or allogeneic hematopoietic cell transplantation (HCT) reached median S1-IgG concentrations similar to those obtained by healthy individuals after a 2-dose schedule. Patients receiving or shortly after completing anti-CD20 therapy, CD19-directed chimeric antigen receptor T-cell therapy recipients, and patients with chronic lymphocytic leukemia receiving ibrutinib were less responsive or unresponsive to the third vaccination. In the 27 patients who received cell therapy between the second and third vaccination, S1 antibodies were preserved, but a third mRNA-1273 vaccination was not associated with significantly enhanced S1-IgG concentrations except for patients with multiple myeloma receiving autologous HCT. A third vaccination was associated with significantly improved neutralization capacity per antibody. Conclusions and Relevance: Results of this cohort study support that the primary schedule for immunocompromised patients with hematologic cancers should be supplemented with a delayed third vaccination. Patients with B-cell lymphoma and allogeneic HCT recipients need to be revaccinated after treatment or transplantation. Trial Registration: EudraCT Identifier: 2021-001072-41

    Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort study.

    Get PDF
    Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration &gt;10 BAU/mL and a previous SARS-CoV-2 infection as N IgG &gt;14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC.</p

    Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients

    No full text
    Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG 300bindingantibodyunits(BAUs)/mLwasconsideredadequateasitrepresentsthelowerlevelofS1IgGconcentrationobtainedinhealthyindividuals,anditcorrelateswithpotentvirusneutralization.Selectedpatients(n5723)wereseverelyimmunocompromisedowingtotheirdiseaseortreatmentthereof.Nevertheless,.50 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n 5 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, .50% of patients obtained S1 IgG 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG 300BAUs/mL.Ruxolitiniborhypomethylatingtherapybutnothigh−dosechemotherapybluntedresponsesinmyeloidmalignancies.Responsesinpatientswithlymphoma,patientswithCLLonibrutinib,andchimericantigenreceptorT−cellrecipientswerelow.Theminimaltimeintervalafterautologoushematopoieticcelltransplantation(HCT)toreachadequateconcentrationswas,2monthsformultiplemyeloma,8monthsforlymphoma,and4to6monthsafterallogeneicHCT.SerumIgG4,absoluteB−andnaturalkiller–cellnumber,andnumberofimmunosuppressantspredictedS1IgG 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was,2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer–cell number, and number of immunosuppressants predicted S1 IgG 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553

    Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients

    No full text
    Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe COVID-19, it is important to identify those patients that benefit from vaccination. We prospectively quantified serum immunoglobulin G (IgG) antibodies to spike subunit 1 (S1) antigens during and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG 300bindingantibodyunits(BAUs)/mLwasconsideredadequateasitrepresentsthelowerlevelofS1IgGconcentrationobtainedinhealthyindividuals,anditcorrelateswithpotentvirusneutralization.Selectedpatients(n5723)wereseverelyimmunocompromisedowingtotheirdiseaseortreatmentthereof.Nevertheless,.50 300 binding antibody units (BAUs)/mL was considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals, and it correlates with potent virus neutralization. Selected patients (n 5 723) were severely immunocompromised owing to their disease or treatment thereof. Nevertheless, .50% of patients obtained S1 IgG 300 BAUs/mL after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations. Around 70% of patients with chronic graft-versus-host disease (cGVHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG 300BAUs/mL.Ruxolitiniborhypomethylatingtherapybutnothigh−dosechemotherapybluntedresponsesinmyeloidmalignancies.Responsesinpatientswithlymphoma,patientswithCLLonibrutinib,andchimericantigenreceptorT−cellrecipientswerelow.Theminimaltimeintervalafterautologoushematopoieticcelltransplantation(HCT)toreachadequateconcentrationswas,2monthsformultiplemyeloma,8monthsforlymphoma,and4to6monthsafterallogeneicHCT.SerumIgG4,absoluteB−andnaturalkiller–cellnumber,andnumberofimmunosuppressantspredictedS1IgG 300 BAUs/mL. Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses in patients with lymphoma, patients with CLL on ibrutinib, and chimeric antigen receptor T-cell recipients were low. The minimal time interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was,2 months for multiple myeloma, 8 months for lymphoma, and 4 to 6 months after allogeneic HCT. Serum IgG4, absolute B- and natural killer–cell number, and number of immunosuppressants predicted S1 IgG 300 BAUs/mL. Hematology patients on chemotherapy, shortly after HCT, or with cGVHD should not be precluded from vaccination. This trial was registered at Netherlands Trial Register as #NL9553

    Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients.

    Get PDF
    Vaccination guidelines for patients treated for hematological diseases are typically conservative. Given their high risk for severe coronavirus infectious disease 2019 (COVID-19) it is important to identify those patients that benefit from vaccination. We prospectively quantified serum IgG antibodies to spike subunit 1 (S1)antigensduring and after 2-dose mRNA-1273 (Spikevax/Moderna) vaccination in hematology patients. Obtaining S1 IgG≥300 binding antibody units (BAU)/mlwas considered adequate as it represents the lower level of S1 IgG concentration obtained in healthy individuals andit correlates with potent virus neutralization. Selected patients (n=723) were severely immunocompromised due to their disease or treatment thereof. Nevertheless, more than 50% of patients obtained S1 IgG ≥300 BAU/ml after 2-dose mRNA-1273. All patients with sickle cell disease or chronic myeloid leukemia obtained adequate antibody concentrations.Around 70% ofpatients with chronic graftversushostdisease (GvHD), multiple myeloma, or untreated chronic lymphocytic leukemia (CLL) obtained S1 IgG≥300 BAU/ml.Ruxolitinib or hypomethylating therapy but not high-dose chemotherapy blunted responses in myeloid malignancies. Responses inlymphoma patients, CLL patients on ibrutinib, and chimeric antigen receptor T cell recipients were low.The minimal time-interval after autologous hematopoietic cell transplantation (HCT) to reach adequate concentrations was <2 months for multiple myeloma, 8 months for lymphoma, and 4-6 months after allogeneic HCT.Serum IgG4, absolute B and NK cell number and number of immunosuppressants predicted S1 IgG ≥300 BAU/ml. Hematology patients on chemotherapy, shortly after HCT, or with chronic GvHD should not be precluded from vaccination. Netherlands Trial Register NL9553

    Fourth mRNA COVID-19 vaccination in immunocompromised patients with haematological malignancies (COBRA KAI): a cohort studyResearch in context

    No full text
    Summary: Background: Patients with haematological malignancies have impaired antibody responses to SARS-CoV-2 vaccination. We aimed to investigate whether a fourth mRNA COVID-19 vaccination improved antibody quantity and quality. Methods: In this cohort study, conducted at 5 sites in the Netherlands, we compared antibody concentrations 28 days after 4 mRNA vaccinations (3-dose primary series plus 1 booster vaccination) in SARS-CoV-2 naive, immunocompromised patients with haematological malignancies to those obtained by age-matched, healthy individuals who had received the standard primary 2-dose mRNA vaccination schedule followed by a first booster mRNA vaccination. Prior to and 4 weeks after each vaccination, peripheral blood samples and data on demographic parameters and medical history were collected. Concentrations of antibodies that bind spike 1 (S1) and nucleocapsid (N) protein of SARS-CoV-2 were quantified in binding antibody units (BAU) per mL according to the WHO International Standard for COVID-19 serological tests. Seroconversion was defined as an S1 IgG concentration >10 BAU/mL and a previous SARS-CoV-2 infection as N IgG >14.3 BAU/mL. Antibody neutralising activity was tested using lentiviral-based pseudoviruses expressing spike protein of SARS-CoV-2 wild-type (D614G), Omicron BA.1, and Omicron BA.4/5 variants. This study is registered with EudraCT, number 2021-001072-41. Findings: Between March 24, 2021 and May 4, 2021, 723 patients with haematological diseases were enrolled, of which 414 fulfilled the inclusion criteria for the current analysis. Although S1 IgG concentrations in patients significantly improved after the fourth dose, they remained significantly lower compared to those obtained by 58 age-matched healthy individuals after their first booster (third) vaccination. The rise in neutralising antibody concentration was most prominent in patients with a recovering B cell compartment, although potent responses were also observed in patients with persistent immunodeficiencies. 19% of patients never seroconverted, despite 4 vaccinations. Patients who received their first 2 vaccinations when they were B cell depleted and the third and fourth vaccination during B cell recovery demonstrated similar antibody induction dynamics as patients with normal B cell numbers during the first 2 vaccinations. However, the neutralising capacity of these antibodies was significantly better than that of patients with normal B cell numbers after two vaccinations. Interpretation: A fourth mRNA COVID-19 vaccination improved S1 IgG concentrations in the majority of patients with a haematological malignancy. Vaccination during B cell depletion may pave the way for better quality of antibody responses after B cell reconstitution. Funding: The Netherlands Organisation for Health Research and Development and Amsterdam UMC
    corecore